Acetate-Induced Disassembly of Spherical Iron Oxide Nanoparticle Clusters into Monodispersed Core–Shell Structures upon Nanoemulsion Fusion
نویسندگان
چکیده
It has been long known that the physical encapsulation of oleic acid-capped iron oxide nanoparticles (OA-IONPs) with the cetyltrimethylammonium (CTA+) surfactant induces the formation of spherical iron oxide nanoparticle clusters (IONPCs). However, the behavior and functional properties of IONPCs in chemical reactions have been largely neglected and are still not well-understood. Herein, we report an unconventional ligand-exchange function of IONPCs activated when dispersed in an ethyl acetate/acetate buffer system. The ligand exchange can successfully transform hydrophobic OA-IONP building blocks of IONPCs into highly hydrophilic, acetate-capped iron oxide nanoparticles (Ac-IONPs). More importantly, we demonstrate that the addition of silica precursors (tetraethyl orthosilicate and 3-aminopropyltriethoxysilane) to the acetate/oleate ligand-exchange reaction of the IONPs induces the disassembly of the IONPCs into monodispersed iron oxide-acetate-silica core-shell-shell (IONPs@acetate@SiO2) nanoparticles. Our observations evidence that the formation of IONPs@acetate@SiO2 nanoparticles is initiated by a unique micellar fusion mechanism between the Pickering-type emulsions of IONPCs and nanoemulsions of silica precursors formed under ethyl acetate buffered conditions. A dynamic rearrangement of the CTA+-oleate bilayer on the IONPC surfaces is proposed to be responsible for the templating process of the silica shells around the individual IONPs. In comparison to previously reported methods in the literature, our work provides a much more detailed experimental evidence of the silica-coating mechanism in a nanoemulsion system. Overall, ethyl acetate is proven to be a very efficient agent for an effortless preparation of monodispersed IONPs@acetate@SiO2 and hydrophilic Ac-IONPs from IONPCs.
منابع مشابه
Fabrication of 2-Chloropyridine-Functionalized Fe3O4/Amino-Silane Core–Shell Nanoparticles
In this report, magnetic iron oxide nanoparticles were synthesized via coprecipitation of Fe2+ and Fe3+ with ammonium hydroxide, and the surface of synthesized nanoparticles was organically functionalized by commercially available amine coupling agent namely, 3-aminopropyl trimethoxysilane (APTS) by using well-known sol–gel method. Further reaction of the synthesized Fe3O4@APTS core-shell magne...
متن کاملReduction of Sintering during Annealing of FePt Nanoparticles Coated with Iron Oxide
FePt/iron oxide core/shell nanoparticles are synthesized by a two step polyol process with 1,2hexadecanediol as the reducing reagent. Monodispersed 2.6-nm FePt nanoparticles are first obtained by reduction of iron(III) acetylacetonate and platinum(II) acetylacetonate. These preformed FePt nanoparticles are then used as seeds and an iron oxide shell is formed in the second synthesis step. The ro...
متن کاملAlkaline Metal Reagent-Assisted Synthesis of Monodisperse Iron Oxide Nanostructures
The solvothermal decomposition of iron complexes using the heat-up process enables monodisperse Fe3O4 nanoparticle synthesis. Here, we demonstrate that the high reduction potential capability of alkaline metal reagents in the reductive environment allows for pure magnetite phase formation at 200 ◦C, which is lower than that of typical synthetic method and offers highly crystalline superparamagn...
متن کاملCo -delivery of Sulforaphane and Curcumin with PEGylated Iron Oxide-Gold Core Shell Nanoparticles for delivery to breast cancer cell line
Co-delivery approach has been recommended to reduce the amount of each drug and to achieve the synergistic effect for cancer treatment. CUR and SF have antitumor effects, but their application is limited because of their low water solubility and poor oral bioavailability. To improve the bioavailability and solubility of SF and CUR, we performed an innovative co-delivery of SF and CUR with magne...
متن کاملCo -delivery of Sulforaphane and Curcumin with PEGylated Iron Oxide-Gold Core Shell Nanoparticles for delivery to breast cancer cell line
Co-delivery approach has been recommended to reduce the amount of each drug and to achieve the synergistic effect for cancer treatment. CUR and SF have antitumor effects, but their application is limited because of their low water solubility and poor oral bioavailability. To improve the bioavailability and solubility of SF and CUR, we performed an innovative co-delivery of SF and CUR with magne...
متن کامل